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The protective effect of KIOM-4, a mixture of plant extracts, was examined against streptozotocin (STZ)-induced mitochondrial
oxidative stress in rat pancreatic f-cells (RINmS5F). KIOM-4 scavenged superoxide and hydroxyl radicals generated by
xanthine/xanthine oxidase and Fenton reaction (FeSO4/H,0,), respectively, in a cell-free chemical system. In addition, a marked
increase in mitochondrial reactive oxygen species (ROS) was observed in STZ-induced diabetic cells; this increase was attenuated
by KIOM-4 treatment. Mitochondrial manganese superoxide dismutase (Mn SOD) activity and protein expression were down-
regulated by STZ treatment and up-regulated by KIOM-4 treatment. In addition, NF-E2 related factor 2 (Nrf2), a transcription
factor for Mn SOD, was up-regulated by KIOM-4. KIOM-4 prevented STZ-induced mitochondrial lipid peroxidation, protein
carbonyl and DNA modification. Moreover, KIOM-4 treatment restored the loss of mitochondrial membrane potential (Ay)
that was induced by STZ treatment, and inhibited the translocation of cytochrome ¢ from the mitochondria to the cytosol. In
addition, KIOM-4 treatment elevated the level of ATP, succinate dehydrogenase activity and insulin level, which were reduced by
STZ treatment. These results suggest that KIOM-4 exhibits a protective effect through its antioxidant effect and the attenuation of

mitochondrial dysfunction in STZ-induced diabetic cells.

1. Introduction

Mitochondria have gained importance in our understanding
of diabetes because mitochondrial function is required for
normal glucose-stimulated insulin release from pancreatic
B-cells [1]. Mitochondria continuously generate superoxide
radical as a byproduct of electron transport [2, 3]. The super-
oxide anion is quickly dismutated to hydrogen peroxide by
mitochondrial manganese superoxide dismutase (Mn SOD)
[4], and hydrogen peroxide is subsequently converted to
water and oxygen by mitochondrial catalase and glutathione
peroxidase [5]. Mitochondria not only produce reactive
oxygen species (ROS) but are also the primary target of
ROS attacks. Impaired mitochondrial function can lead to
increased ROS generation and may increase oxidative stress

if the antioxidant defense mechanisms of the cells are over-
whelmed [6, 7]. Increased oxidative stress by mitochondrial
dysfunction is considered a causal link between elevated
glucose and the major biochemical pathways postulated to
be involved in the pathogenesis of diabetes and diabetic
complications [8, 9]. Streptozotocin (STZ) [N-(methyl nitro
carbamoyl)-p-glucosamine] has been used to act as diabeto-
genic agent due to its ability to destruct pancreatic f-cells
via the formation of ROS [10, 11]. It has been reported that
production of mitochondrial ROS increased in STZ-treated
rat, and mitochondrial lipid peroxidation was observed in
pancreatic tissue, suggesting STZ-induced mitochondrial
oxidative stress [12]. Thus, antioxidant therapy may be a
promising therapeutic approach for controlling diabetes or
diabetic complications.
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KIOM-4 is a combination of extracts obtained from
Magnolia officinalis, Pueraria lobata, Glycyrrhiza uralensis
and Euphorbia pekinensis. M. officinalis exhibits antimu-
tagenic, hepato-protective, neuro-protective, antiinflamma-
tory and antimicrobial activities [13-18]. P. lobata has
antimutagenic, antidiabetic and antioxidant effects [19-
21]. G. uralensis has been documented as having detoxi-
fication, antioxidant, antiulcer, antiinflammatory, antiviral,
antiatherogenic, anticarcinogenic effects and cytoprotective
effect of hepatocyte against hepatotoxicity [22-24]. E.
pekinensis has antiviral and cytotoxic activities [25, 26]. We
recently demonstrated that KIOM-4 exhibits cytoprotective
effects against STZ-induced oxidative stress damage in f3-cells
via the activation of catalase and heme oxygenase-1 [27, 28].

This study was undertaken to investigate the protective
effect of KIOM-4 and its mechanism against STZ-induced
oxidative mitochondrial damage in pancreatic f3-cells.

2. Methods

2.1. Preparation of KIOM-4. The cortex of M. officinalis,
and radixes of P. lobata, G. uralensis and E. pekinensis were
collected from the Gamsuk province in China, and identified
by Prof. J.H. Kim of the Division of Life Science, Daejeon
University, Korea. All voucher specimens were deposited at
the herbarium of the Department of Herbal Pharmaceutical
Development, Korea Institute of Oriental Medicine (No.
1240, 2, 7 and 207, resp.). An equal amount of Magnoliae
cortex, and radixes of Puerariae, Glycyrrhizae and Euphoriae
was mixed, pulverized and extracted in 80% ethanol for one
week at room temperature, concentrated using a rotary evap-
orator and lyophilized. The entire procedure was repeated
four times. KIOM-4 was dissolved in dimethyl sulfoxide
(DMSO), the final concentration of which did not exceed
0.1%.

2.2. Reagents. STZ was purchased from Calbiochem (San
Diego, CA). Dihydrorhodamin 123 (DHR 123) and JC-1
(5,5',6,6'-tetrachloro-1,1',3,3’-tetraethyl-benzimidazolcar-
bocyanine iodide) were purchased from Molecular Probes
(Eugene, OR). Cytochrome ¢ (H-104), Nrf2 (C-20)
antibodies were purchased from the Santa Cruz Bio-
technology (Santa Cruz, CA). The Mn SOD polyclonal
antibody was purchased from the Stressgen Corporation
(Victoria, Canada). 5, 5-dimethyl-1-pyrroline-N-oxide
(DMPO) and [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-
razolium] bromide (MTT) were purchased from the Sigma
Chemical Company (St. Louis, MO).

2.3. Cell Culture and Treatments. RINm5F rat pancreatic f-
cells were maintained at 37°C in an incubator with a humid-
ified atmosphere of 5% CO,, and cultured in RPMI-1640
medium containing 10% heat-inactivated fetal calf serum,
streptomycin (100 ug ml™!) and penicillin (100 units ml™!).
Cells were seeded on to a culture plate at a concentration of
1 X 10° cells ml™!, and at 16 h after plating were treated with
KIOM-4 at 50 ygml~!. After 1h, 10mM STZ was added to
the plate.
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2.4. Detection of Superoxide Radical. Superoxide radicals
were produced by reaction of the xanthine/xanthine oxidase
system and reacted with spin trap DMPO. The DMPO-
-OOH adducts were detected using electron spin resonance
(ESR) spectroscopy [29]. The ESR spectrum was recorded
2.5 min after mixing in a phosphate buffer solution (pH 7.4)
with 6 M DMPO 20 ul, xanthine oxidase (0.25 U ml™1) 20 u,
xanthine (5 mM) 20 gl and KIOM-4 (final 50 uygml~!) 20 ul
using JES-FA ESR spectrometer (JEOL, Tokyo, Japan).

2.5. Detection of Hydroxyl Radical. Hydroxyl radicals were
generated by Fenton reaction. Hydroxyl radicals reacted with
DMPO and the resultant DMPO-OH adducts were detected
using an ESR spectrometer [29]. The ESR spectrum was
recorded 2.5 min after mixing in a phosphate buffer solution
(pH 7.4) with 0.2ml of 0.3M DMPO, 0.2ml of 10 mM
FeSOy4, 0.2ml of 10mM H,0, and KIOM-4 using ESR
spectrometer.

2.6. Mitochondrial ROS Measurement. The RINm5F cells
were seeded on to a 96-well plate at 2 x 10* cells/well. At
16 h after plating, the cells were treated with KIOM-4 at
50ugml~!, and 1h later 10 mM STZ was added to the plate.
The cells were incubated for an additional 30 min at 37°C.
After addition of 20 uM of DHR 123 solution for 10 min,
the fluorescence was detected using a Perkin Elmer LS-5B
spectrofluorometer and flow cytometer (Becton Dickinson,
Mountain View, CA). For image analysis of the generation
of mitochondrial ROS, the cells were seeded on a cover-
slip loaded six-well plate at 2 x 10> cells/well. At 16 h after
plating, the cells were treated with KIOM-4, and 1h later
10mM STZ was added to the plate. After changing the
media, 20uM of DHR 123 was added to each well and
the plate was incubated for an additional 30 min at 37°C.
After washing with PBS, the stained cells were mounted
onto a microscope slide in mounting medium (DAKO,
Carpinteria, CA). Images were collected using the Laser
Scanning Microscope 5 PASCAL program (Carl Zeiss, Jena,
Germany) on a confocal microscope.

2.7. Cellular Mitochondrial Fractionation. Mitochondrial
fractions were isolated by differential centrifugation using
the mitochondria isolation kit (Active-Motif, Carlsbad, CA).

2.8. Measurement of Mn SOD Activity. The RINm5F cells
were seeded on to a culture dish at a concentration of 1 X
10° cells ml™!, and at 16 h after plating were treated with
KIOM-4 at 50 yugml~!. After 1h, 10mM STZ was added to
the plate, which was incubated for a further 24 h. The har-
vested cells were suspended in 10 mM phosphate buffer (pH
7.5) and then lysed on ice by sonicating twice for 15 s. Triton
X-100 (1%) was then added to the lysates and incubated for
10 min on ice. The lysates were clarified, by centrifugation
at 5000g for 30min at 4°C, and the protein content
of the supernatant was determined. Fifty micrograms of
protein was added to 500 mM phosphate buffer (pH 10.2),
1 mM potassium cyanide (inhibitor of Cu Zn SOD) and
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1 mM epinephrine. Epinephrine rapidly undergoes auto-
oxidation at pH 10 to produce adrenochrome, a pink-colored
product, which was assayed at 480nm using a UV/VIS
spectrophotometer in the kinetic mode. Mn SOD inhibits
the auto-oxidation of epinephrine. The rate of inhibition was
monitored at 480 nm and the amount of enzyme required to
produce 50% inhibition was defined as one unit of enzyme
activity, and the Mn SOD activity was expressed as units/mg
protein [30].

2.9. Western Blot. Aliquots of the lysates (40 ug of protein)
were boiled for 5min and electrophoresed on a 10%
SDS-polyacrylamide gel. Blots in the gels were transferred
onto nitrocellulose membranes (Bio-Rad, Hercules, CA).
The nitrocellulose membrane was incubated with primary
antibodies (1:1000) at 4°C overnight. Secondary antibody
horseradish peroxidase conjugates (1:5000) (Pierce, Rock-
land, IL) were added, and incubated at room temperature for
1 h, and exposed to X-ray film. Protein bands were detected
using an enhanced chemiluminescence western blotting
detection kit (Amersham, Little Chalfont, Buckinghamshire,
UK).

2.10. Lipid Peroxidation Assay. Lipid peroxidation was
assayed by determination of 8-isoprostane levels [31] in the
culture medium, by use of a commercial enzyme immunoas-
say kit (Cayman Chemical, Ann Arbor, MI) according to the
manufacturer’s instructions.

2.11. Protein Carbonyl Formation. The amount of protein
carbonyl formation was determined using an Oxiselect
protein carbonyl ELISA kit purchased from Cell Biolabs (San
Diego, CA) according to the manufacturer’s instructions.

2.12. 8-Hydroxyl-2'-deoxyguanosine Assay. The amount of
8-hydroxyl-2’-deoxyguanosine (8-OHdG) was determined
using a Bioxytech 8-OHdG-ELISA Kit purchased from
OXIS Health Products (Portland, OR) according to the
manufacturer’s instructions.

2.13. Mitochondrial Membrane Potential Analysis. Mito-
chondrial membrane potential (Ay) was analyzed using JC-
1, alipophilic cationic fluorescence dye. Cells were harvested,
and after changing the media, JC-1 was added to each
well and incubated for an additional 30 min at 37°C. After
washing with PBS, the stained cells were assayed using
flow cytometer. For image analysis of mitochondrial Ay,
the stained cells were mounted onto microscope slide in
mounting medium. Microscopic images were collected using
the Laser Scanning Microscope 5 PASCAL program on
confocal microscope [32].

2.14. Quantification of Cellular ATP Levels. The mitochon-
drial function was evaluated by measuring the cellular
adenosine triphosphate (ATP) production in cells. The
cells were harvested and washed twice with PBS. The
harvested cells were then lysed on ice for 30 min in 200 ul

of lysis buffer [25mM Tris (pH 7.8), 270mM sucrose,
1 mM EDTA] by sonicating three times for 15s and cen-
trifuged at 4°C for 10 min at 16000g. Supernatants were
collected from the lysates and ATP content was assayed
using a luciferase/luciferin ATP determination kit (Molecular
Probes, Eugene, OR) [33].

2.15. Mitochondrial Succinate Dehydrogenase Activity. To
evaluate mitochondrial metabolic activity, mitochondrial
succinate dehydrogenase activity was estimated by the MTT
assay [34]. The cells were treated with KIOM-4 at 50 yg ml~!.
After 1h, 10mM of STZ, and the mixture was incubated
for 24 h. Fifty microliters of the [3-(4,5-dimethylthiazol-2-
y1)-2, 5-diphenyltetrazolium] bromide (MTT) stock solution
(2mgml~!) was then added into each well to attain a total
reaction volume of 200ul. After incubating for 4 h, the plate
was centrifuged at 800 g for 5 min and the supernatants were
aspirated. The formazan crystals in each well were dissolved
in 150 pl of dimethylsulfoxide and read at As4y on a scanning
multi-well spectrophotometer [35].

2.16. Measurements of Insulin Levels. The cells were treated
with KIOM-4 at 50 ygml™!, and 1h later 10mM STZ was
added to the plate, and the mixture was incubated for 24 h.
The amount of insulin was determined by using an ELISA
rat specific insulin enzyme immunoassay kit (Spi-Bio, Massy,
France).

2.17. Statistical Analysis. All the measurements were made
in triplicate and all values are represented as the mean =+
standard error of the mean (SEM). Data were subjected to
an analysis of the variance (ANOVA) using the Tukey test
to analyze the difference. A P-value of <.05 was considered
significant.

3. Results

3.1. Radical Scavenging Activity of KIOM-4 in a Cell-Free
System. Our previous result showed that the intracellular
ROS scavenging activity of KIOM-4 was 48, 55 and 66% at
concentrations of 10, 50 and 100 ugml™?, respectively [24].
And KIOM-4 at concentrations of 100 yg ml~! showed some
cytotoxicity (data not shown). Therefore, we determined to
choose 50 ugml~! as optimal dose for further study. The
radical scavenging effects of KIOM-4 on superoxide radicals
and hydroxyl radicals were measured. Superoxide radicals
produced by the xanthine/xanthine oxidase system and the
hydroxyl radicals generated by the Fenton reaction (FeSOj4 +
H,0,) in a cell-free system were detected by ESR spectrome-
try. The ESR results revealed no clear signal in the control and
the 50 ugml~! of KIOM-4; however, the superoxide radical
signal increased to 646 in the xanthine/xanthine oxidase
system. KIOM-4 treatment decreased the superoxide radical
signal to 209 (Figure 1(a)). In addition, the hydroxyl radical
signal increased to 2809 in the FeSO4 + H,0; system. KIOM-
4 treatment decreased the hydroxyl radical signal to 386
(Figure 1(b)).
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the resultant DMPO-OOH adducts were detected using an ESR
spectrometer. (b) Hydroxyl radicals were generated by the Fenton
reaction (H,0,/FeSO,) and reacted with DMPO; the resultant
DMPO-OH adducts were detected using an ESR spectrometer.

3.2. Reduction of Mitochondrial ROS by KIOM-4 Treatment.
The fluorescence dye DHR 123 was used to detect mito-
chondrial ROS in cells after STZ treatment. The fluorescence
spectrometric data revealed that STZ treatment increased
the level of mitochondrial ROS compared with control.
However, treatment with KIOM-4 at 50 ug ml~! attenuated
the STZ-induced ROS increase (Figure 2(a)). In addition,
flow cytometry revealed a fluorescence intensity of 106
for ROS in STZ-treated cells with KIOM-4 at 50 uygml~!,
compared with a fluorescence intensity of 533 in STZ-
treated cells (Figure 2(b)). Confocal microscopy revealed
that KIOM-4 reduced the red fluorescence intensity of
STZ-induced mitochondrial ROS (Figure 2(c)). These data
suggest that KIOM-4 had mitochondrial ROS scavenging
properties.

3.3. Induction of Mn SOD and Its Transcription Factor by
KIOM-4 Treatment. Mn SOD acts as a first defense system
to protect mitochondria and other cellular components
as it scavenges superoxide anion in the mitochondrial
matrix [36]. As shown in Figure 3(a), Mn SOD activity was
30Umg™! protein with 50 ugml~! of KIOM-4, compared
with 26 Umg™! protein in the control. STZ treatment
decreased the SOD activity to 12U mg™! protein; however,
treatment with KIOM-4 increased this activity to 20 U mg™!
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protein. In addition, western blot data revealed that STZ
treatment decreased the expression of Mn SOD compared
with control. KIOM-4 treatment at 50 ug ml~! increased the
Mn SOD level attenuated by STZ treatment (Figure 3(b)).
Mn SOD has an antioxidant response element (ARE)
sequence in its promoter region. Nrf2 is an important
transcription factor that regulates ARE-driven Mn SOD
expression. Nuclear Nrf2 expression was decreased by STZ
treatment; however, KIOM-4 treatment cells increased the
nuclear Nrf2 expression (Figure 3(c)). These data suggest
that KIOM-4 exhibited induction of Mn SOD via activation
of Nrf2.

3.4. Protection of Damaged Mitochondrial Components by
KIOM-4 Treatment. The level of 8-isoprostan, a marker
of lipid peroxidation, is increased to 230 pgml~! in cells
exposed to STZ, compared with 159 pgml™ in control cells.
KIOM-4, however, decreased this level to 161 pgml~! in
STZ-treated cells (Figure 4(a)). The mitochondrial protein
carbonyl content, which is marker of protein modification
[37], increased significantly after STZ treatment, and KIOM-
4 prevented the STZ-induced protein carbonyl formation
(Figure 4(b)). STZ treatment increased the amount of 8-
OHAG, which is marker of base modification in DNA [38],
to 2006 pgml~! compared with 247 pgml~! in control cells,
and KIOM-4 decreased 8-OHdG to 777 pgml~! in STZ-
treated cells (Figure 4(c)). These data suggest that KIOM-
4 provides protection against STZ-induced mitochondrial
damages.

3.5. Recovery of Disrupted Mitochondrial Ay and Its Related
Protein by KIOM-4 Treatment. The mitochondrial Ay,
which is a marker of mitochondrial membrane integrity, was
detected using flow cytometry and confocal microscopy after
staining with the fluorescence dye JC-1. The flow cytometric
data showed that the STZ treatment resulted in the loss of
Ay, as substantiated by an increase in fluorescence (FL-1)
with JC-1. KIOM-4 treatment blocked the loss of Ay in
STZ-treated cells. The fluorescence intensity was 301 value
in STZ-treated cells with 50 ygml~! of KIOM-4, compared
with a fluorescence intensity of 586 in STZ-treated cells
(Figure 5(a)). In addition, the confocal microscopy data
showed that control cells and cells treated with KIOM-4
only exhibited strong red fluorescence in the mitochondria
after JC-1 staining, indicating that mitochondrial Ay was
in the polarized state (Figure 5(b), left panel). However,
STZ treatment resulted in decreased red fluorescence in the
mitochondria and increased green fluorescence, suggesting
that STZ treatment disrupted the mitochondrial Ay to a
depolarized state. KIOM-4 treatment decreased the green
fluorescence in STZ-treated cells (Figure 5(b), right panel),
indicating that KIOM-4 inhibited the loss of Ay in response
to STZ treatment. The pore opening induces the loss of Ay,
which in turn induces the release of cytochrome ¢ from
the mitochondria and most commonly leads to apoptotic
cell death [39]. KIOM-4 inhibited the STZ-induced release
of cytochrome ¢ from the mitochondria into the cytosol



Evidence-Based Complementary and Alternative Medicine

8000
8
= *
£ 6000 | T
"g * k
g x T
193
[©]
=1 T
E 4000 -
S
]
jnd
Z
<
E 2000
a
)
0
Control ~ KIOM-4 STZ  KIOM-4 +
STZ
(a)
Control KIOM-4 STZ KIOM-4 + STZ
100 100 100 100
FI: 81 FI. 77 FI: 533 FI: 106
80 80 80 80
2 60 2 60 - 260 2 60
g g [=} ] g
=} =} = i = J
Q Q Q 4 o
O 40 4 O 40 040 4 O 40 M
20 20 - 204 20 M)j
0_4."I""I""I""I 0 - | T T 0_;""I""I""I T 0 ".T""I"\.'\'I""I
10 100 102 10 10% 10 10! 102 10® 10% 10 100 102 10 10% 0% 10! 102 10 10%
Increase of mitochondrial ROS
(b)
Control KIOM-4 KIOM-4 + STZ

(c)

Figure 2: The effect of KIOM-4 on STZ-induced mitochondrial ROS generation. The cells were treated with KIOM-4 at 50 yg ml~!. After
1h, 10 mM of STZ was added to the plate. After an additional 30 min, the mitochondrial ROS were detected by spectrofluorometry (a)
and flow cytometry (b) after DHR 123 treatment. FI indicates the fluorescence intensity of DHR 123. (c) The representative confocal images
illustrate the increase in red fluorescence intensity of DHR 123 produced by ROS in STZ-treated cells s compared with that in control and the
lowered fluorescence intensity in STZ-treated cells with KIOM-4 (original magnification x400). The measurements were made in triplicate
and the values were expressed as means + SEM. Asterisk represents significantly different from control cells (P < .05) and double asterisk

represent significantly different from STZ-treated cells (P < .05).

(Figure 5(c)). These results suggest that KIOM-4 protected
against STZ-damage to mitochondrial Ay.

3.6. Enhancement of Decreased Intracellular ATP Level, Mito-
chondrial Enzymes, and Insulin Secretion by KIOM-4 Treat-
ment. Mitochondrial injury is followed by the depletion of

intracellular ATP and mitochondrial enzymes. As shown in
Figure 6(a), STZ treatment reduced the ATP level compared
with that in control cells; however, KIOM-4 treatment
recovered the ATP level in STZ-treated cells. Mitochondrial
succinate dehydrogenase activity was decreased in STZ-
treated cells; however, KIOM-4 treatment of STZ-treated
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FIGURE 3: The effect of KIOM-4 on Mn SOD and its transcription
factor. (a) The enzyme activities are expressed as average enzyme
unit per mg protein + SEM. Western blot analysis was performed
using anti-Mn SOD (b) and Nrf2 (c) antibody. Asterisk represent
significantly different from control cells (P < .05) and double
asterisk represent significantly different from STZ-treated cells (P
<.05).

cells enhanced this activity (Figure 6(b)). Furthermore, STZ
decreased the insulin level of RINm5F, which secretes insulin,
however, KIOM-4 treatment of STZ-treated cells enhanced
insulin secretion (Figure 6(c)). These results suggest that
KIOM-4 attenuates mitochondrial dysfunction in STZ-
induced diabetic cells.

4. Discussion

Mitochondrial radical production and consequent oxida-
tive damage contribute to the progressive and patho-
physiological conditions of diabetes. It has been suggested
that mitochondrial ROS induced by high glucose might cause
the pathogenesis of diabetes mellitus and its complications
through modification of various mitochondrial events [40].
Consequently, therapeutic strategies to decrease ROS pro-
duction or to intercept these ROS should be explored [41].
Numerous studies have reported that antioxidant treatment,
which targets oxidative stress, may help prevent or delay
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F1GURE 5: The effect of KIOM-4 on mitochondrial Ay and its related proteins. The mitochondrial Ay was analyzed using (a) flow cytometry
and (b) confocal microscopy after staining cells with JC-1 dye. Western blot analysis was performed using anti-cytochrome ¢ (c) antibody.

the development of diabetes and its complications [42, 43].  study, KIOM-4 exhibited significant ROS radical scavenging
In this context, the possible anti-diabetic effects of KIOM-  activity against superoxide and hydroxyl radicals. Moreover,
4 on the oxidative mitochondrial damage induced by STZ  KIOM-4 attenuated the STZ-induced increase in mitochon-
treatment in pancreatic f-cells were elucidated. In this  drial ROS. Mn SOD is located in the mitochondrial matrix



8
3000
2500 |
s 2000 |
G T * * %
T 1500 | L
2
£
< 1000 | ol
500
0
Control  KIOM-4 STZ  KIOM-4 +
STZ
(a)
120 ¢
100 | T <
L
£
o = 80
g s
= O
Sy
5 2 60 1 * %
< X =
S
2 E 40+ *
o G T
(% <
20 F
0
Control ~ KIOM-4 STZ  KIOM-4 +
STZ
(b)
1000
800 |
-
g T
2 600 |
= k%
5 T
£ 400 |
E
=
200 *
0
Control ~ KIOM-4 STZ  KIOM-4 +
STZ

(c)

Ficure 6: The effect of KIOM-4 on intracellular ATP level,
mitochondrial enzyme, and insulin level. (a) ATP content was
assayed using a luciferase/luciferin ATP determination kit. (b)
Mitochondrial succinate dehydrogenase activity was estimated by
the MTT assay. (c) The amount of insulin was determined by using
an ELISA rat specific insulin enzyme immunoassay kit. Asterisk
represent significantly different from control cells (P < .05) and
double asterisk represent significantly different from STZ-treated
cells (P < .05).
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FIGURE 7: A proposed pathway for protective effect of KIOM-4
against STZ-induced mitochondrial oxidative stress in pancreatic f3-
cells via its antioxidant effects.

and is the primary SOD isoform that dismutates superoxide
anions generated by the mitochondrial respiratory chain
[44]. Pancreatic cells contain relatively low levels of antiox-
idant enzymes, making these cells more vulnerable to oxida-
tive stress [42, 45]. A significant imbalance between ROS
production and endogenous Mn SOD has been confirmed
by the reduced activity and protein expression of Mn SOD
in STZ-treated cells. In diabetes, decreased Mn SOD activity
promotes the damage to cellular components such as lipid,
protein and DNA [46]. Treatment with KIOM-4 restored the
Mn SOD activity decreased by STZ. In addition, our previous
study suggested that KIOM-4 exhibited cytoprotective effects
against STZ-induced oxidative stress damage in [-cells
via the activation of catalase and heme oxygenase-1 [27,
28]. Meanwhile, Nrf2 is able to activate the antioxidant-
responsive element (ARE)-dependent gene expression in
order to maintain cellular redox homeostasis [47]. Nrf2
is an important transcription factor that regulates ARE-
driven expression of antioxidant genes, including Mn SOD.
Nuclear Nrf2 expression was decreased by STZ treatment;
however, KIOM-4 treatment recovered the nuclear Nrf2
expression. The components in the mitochondrial matrix
are highly susceptible to an oxidative environment [48].
KIOM-4 prevented the STZ-induced mitochondrial lipid
peroxidation, protein carbonyl and DNA modification. In
general, mitochondrial DNA is more vulnerable to oxidative
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stress, and the subsequent damage is more extensive than
that in nuclear DNA due to the lack of protective histones
and low repair mechanisms [45, 46]. Elevated oxidative
stress can increase the membrane permeability of the
mitochondria by opening pores in the inner mitochondrial
membrane, and can lead to the loss of Ay [49]. The loss
of mitochondrial Ay can cause the release of cytochrome
¢ and the activation of the apoptotic pathway [50]. Indeed,
STZ treatment disrupted the mitochondrial Ay and resulted
in the release of mitochondrial cytochrome ¢ to cytosol.
However, KIOM-4 prevented the sequential mitochondrial
damage process induced by STZ treatment. The elevated level
of mitochondrial ROS generated by STZ acts as a powerful
oxidant and causes damage to mitochondrial respiratory
chain complexes. As mitochondria are the major producers
of ATP, mitochondrial dysfunction also leads to reduced ATP
levels [51]. Depletion of ATP content was observed in STZ-
treated cells as a consequence of impaired mitochondrial
respiratory chain activity. Succinate dehydrogenase is a
mitochondrial TCA cycle enzyme and its activity is mainly
regulated by ATP [52]. KIOM-4 treatment restored the ATP
content and the succinate dehydrogenase activity, which
were both reduced by STZ treatment. It has been reported
that STZ treatment can increase mitochondrial ROS in rat
pancreatic tissue, and the mitochondrial oxidative stress
reduces insulin secretion by pancreatic fS-cells [12, 53].
KIOM-4 significantly increased insulin content decreased by
STZ treatment.

Hence, these results suggest that KIOM-4 protects against
ROS-mediated mitochondrial dysfunction in diabetic pan-
creatic f-cells by scavenging ROS and inducing mitochon-
drial antioxidant enzymes (Figure 7).
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